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ZERO MEMORY DETECTION OF RANDOM SIGNALS IN 0-MIX1NC NOISE M 'iTCT
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ABSTRACT II. preliminaries

Design of detectors for -aixing signals in Let CX i=,2.... be a strictly stationary se-

0-mixing noise is considered, where a large degree i

of dependency may also occur between the signal and quence of random variables. For asb, define M(ab)=
noise. Applying the criterion of asymptotic rela- OXaXa+l ... X b, the a-algebra generated by the

tive efficiency, it is shown that this design re- indicated random variables, where a and b may take
duces to the solution of an integral equation in
which knowledge of only the second-order statistics on extended real values. Then CX ~i=l,2,...) is

of the random processes involved is required. From symmetricall , Znixii if there exists a nonnegative

this is may be seen that if the signal is indepen- sequence f{$;i=1,2,... with 0 - 0 such that for

dent of the noise and has nonzero mean, the optimal 1

detector is the same as in the constant known sig- each k, ifk<', and tor each i l, E1 E M(l,k) and

nal case. E 2 M(k+i,-) together imply

I. Introduction IP(EI nE 2 ) - P(E 1 ) P(E2)1 : $i min fP(E 1 ), P(E2)

A longstanding area of both practical and the- We will consider detection of a symmetrically

oretical importance has been the detection of sig- 2
nals in corrupting noise. Because of modern high mixing signal S i;i=l,2 .... , where O<EC[S I I}<, In

speed sampling, the presence of a dependent noise i
process is to be anticipated. Neyman-Pearson opti- additive sy'mmetrically c-mixing noise

mal techniques [1] are tractable only in cases where we observe realizations {y i;i=l,2. n} of

where the appropriate multivariate distributions t

are known. Since in non-Gaussian situations these i

distributions are often not known, it has frequent- ARE fidelity criterion, this will amount to a choice

ly been found fruitful to adopt an alternative fi- between the two hypotheses

delity criterion, commonly the asymptotic relative

efficiency (ARE) criterion, which is especially H Yi
= 

Ni ; i=1,2,....n

appropriate in the weak signal situation. Because

continuous time detection is often intractable in Y N + 0S 1=1,2.n
the non-Gaussian case, current efforts are directed 1 i

toward discrete time detection. Results in this

area have been obtained recently by Poor and Thomas where O is a parameter which will be allowed to ap-

[2,31 for the case of memoryless detection of a proach zero at the proper rate, thus yielding the

known constant signal in additive m-dependent noise; asymptotic limit. Throughout the discussion we will
we have shown [4,5] how these results may be ex- assume that both the noise and signal processes

tended to a large class of 0-mixing noises, thus possess (possibly different) 0-representatlves which
allowing the employment of noise models which more satisfy

accurately reflect physical reality. The latter

results guarantee performance (as measured by the

ARE criterion) at least as good as that of the opt- - <

imal detector [2,3] designed under the assumption il

of m-dependent noise (which may be taken to Include

"white noise" as a special case). Any such symmetrically -mixing process will be

The class of processes used to model the noise called acceptable. For convenience we assume the

in the above work may be seen to be quite general; existence of densities fj(.,.) of Nk and Nk+j '

however, the assumption of a constant known signal f(-) of Nil f(.,.) of Nk and 
5
k where the latter

is in many cases overly restrictive. Instead of Ik

such an assumption, we might wish to model the sig- is assumed to be independent of k. We also assume

nal as a random process. To set the problem In its ny - (x,y)+f (y,
greatest generality, we should allow dependency be- K n(.,y) A E(yi i x)] fwr-w~~

tween signal samples (and thus employ -mlxing J-
models tor both signal and noise), and we should

also allow some degree of dependency between signal is square integrable for all n, and that f(') is

and noise. We are thus led to the problem of the strictly positive on the real line. We assume in

design of the optimal detector in this general addition that

random signal situation.

Presented at the 1980 Conference on Information S7iences and Sfstoms, March 26-28, 1980;

to be published in the Proceedings of the Conference.
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fv 22 _ fixv) dy for some constant k2 0

and fJ (x) - f(x,y) dxdy = 0

fy Ix f(x,y) dv / /T?.3
are square Integrable (all integrals, unless (di- (d) F [gC I N1  1
cated otherwise, are taken over the entire real
line). Note that if the signal and noise are in- (x) f(x-Oy,y) dxdy
dependent, the latter condition is equivalent to TO f x 0=0the assumption of finite Fisher's information
number contained in [2,3] and [4,5]. We alsoassume that - 0g(x) f(x-Oy,y) 

dxdy

lim ff(x-y,v) dy = f(x).
0-0 if Lyg W)ax fix,y) dxdy 0 0, or

As in [2,3] and [4,5], we will optimize over the
class of optimal memoryless detectors designed
under a "white noise" assumption, i.e. where a (e) - ffgx) f(x-Oy,y) dxdy =

n 302 10=0

test statistic T (y) = g(y1 ) is compared to 2

-- g(x) f(x-8y,v) dxdy

a threshold. Specifying g will therefore be of ffL 0 2 10=0
prime concern.

We will restrict the class G of nonlinearities dxC 3
g to include those measurable real valued functions if jjyg(x) - fix,y) dxdy 0
for which we can find 01>0 such that the random

variable g(NI + eSI) is second-order for all 0 f

[0,01], and such that the following mild regularity 0 giN 1)
2 2

2 Efg(NI)g(N 1 )T 
>  

.• j=l

conditions hold, where F 0() denotes expectation The restrictions on the densities f

computed under H1 with parameter O(by proper choice f() and f(.,.) and the class 1 are what might be

of the threshold, we assume without loss of gener- expected when compared to those of 12,3] and [4,51
ality that the random variables g(NI) are zero for the constant known signal case. Properties (a)-
mean): t" (c') are assumptions conventionally imposed for

(a) Jg(x)f'(x)dx J 0 application of the Pitman-Noetbler theorem [6],

if the signal and noise processes are independent whereas (d)-(e') are exceedingly mild restrictions.
For a large class of processes, including all of the

2 examples of [3], property f) is satisfied and may
Cb) lim 1-0 E0 {Tg(Y)l 0 =oJ 0 therefore be ignored.

n-- nE0 j [Tg(Y)1 2  
T I. )eveloRment

if y ' CThe tractability of the ARE approach Is de-
x 12 rived chiefly from an appeal to central limit

Ea=(TgVm lfo1 imposition of a mixing condition on the dependency

Cb') lim neg) > 0 structure. The following lemma, for the case ofnW nE [T(Y)]2
1 independent signal and noise, Is the first step to-0 , g[ ward obtaining the appropriate mixing conditionfly under I:

if ffyg(x) i-- f(x,y) dxdv 
= 0

x Lemma 1: If {N1 ;i=l,2 .). and (Si :i=l,?,... are
Cc) - lim EgNI+SSI) 0kl acceptable and independent processes, thkn the

n
-  

process NI,SI,N2,S2,... is acceptable.

= i- Efg(N +OSI)} O I = Proof: Let El ( o{NIS l N....Nk ' S kand

for some constant kI > 0 E2 ( o{Nk+l, Sk+l .. .. I ' . In a manner similar to

It , that of [7], we conclude from [8,p.371 that (for
fJy( f x,y) dxdy 0, or fixed Ik E IEE 21+111 I FUEj 1j"

32(c) -< lim 32 E=g(N +OS1) where a A N(Nk+i, S k+1- . k+1,Sk+] , and hence

n- 30 10=k 2/nk

2 2 Eg(NI+OS1C). 0  (E (7El 2 1d j ' Ii is a martingale. It follows

30
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from f8,p.3321 that E{IE.i (I Ef I2 e1 = I wpl. dF (j) = dFN, X , xY
.JE2 E2 wNIS NS,j k+i'yk4i"*"k+i' k+,j

Since E{{III 2CI ; 1 I it follows from the where F N,S,j() is the distribution function of

martingale convergence theorem [8, p.319] due to N S ...,N S I and
Doob that EfE1 j }, IA IE in 1. 1), wherew is the k+i, k+i.

measure induced by Nk+iS k+ .... Therefore, it dFN,S (kj) =

follows from [8, p.6031 that there exist measurable

h j R2(j-i+l) -, R satisfying dFNSkj (xlYl.... 'yk+ . Xk+J'yk+j

h j(N k+iS k+i, ,N k+jSk+j ) = EfE21 6 . Note also where F N,S,k,j(..) is the distribution function of

that IhjI : 1 for all values of the argument, and N1lS .l..Nk'Sk'Nk+i'Sk+i'''. Nk+j'Sk+j

hj(Nk+' Sk+i,..,Nk+j Sk+j) + IE2 in L ( ). It We then have, fore* 0 and large J,
also follows from [8, p.603] that there exist mea- P(I. nE )-Ef I h I <
surable w: R 2k , JR such that w(N,S I .... N k'2S k 1 2()

IEI' We will now introduce some notation which P-ess sup II E1. • F{IE2h i2 < F

will simplify the development of the proof (in the
following I and k are fixed): andA

h h(Nk+i' k i kj' k+ IP(El)P(E 2)-EfIE I WE h)I <

SW(Xl1Yl... Xk'Yk) P-ess sup 11E< E6IE2-h i< (2)

h j (xk+i'Yk+i . ,xk+jyk+j )

Now
dFN = d 1N(Xl.... Xk) 

E{IE h I - EUIE E h =

where F (--.) is the distribution function of

Nl N.....Nk f hj dFNIS(k,J) - / dFNIS jhjdF N(I)S =

dFN(J) = dFN,j (xk+ i .... Xk+j )  i h

where F N,j(...) is the distribution function of ff dF(kj)dF(k.j) -

Nk+i.... Nk, . h dFN dFN(J)dF S dFs() I

dFS = dFs(Yl,...,y k  because of the independence of signal and noise' and
thus

where F S(-.) is the distribution function ofSl .... Sk ,  E{IE hj - EliI N~h .1
Isk' El E1  (3)

dFs (j) = dFSj ( yk+i .... Yk+j If f hjdFN(k,i) -f dFNP i dFN(i) )dFs(k,j)!

where FS(...) is the distribution function of

S'j + I ff w dF Nftf1 dFN (J)dF S(k,1)S k+i,...,Sk+
j ,

dF (k,j) = dFNkl(xl. xk'xk+ xk+j) -ffff, hdFN dFN(J)dFs dF(j) "
where N is the distribution (unction of

e N N Ns Now [9, p.1
7
01 implies that the first summand on the

N1 ... INk' Nk+i''''Nk+j' right hand side of (3) can be upper hounded by

dFs(k,J) dFs,k,j(yl....YkYk+i .... Yk+j) f2.1  EI lw(NlYl,...,NkYk) ) •

where FS,k,j( is the distribution function of (P-ess sup jh I)dFs(k,J)

Sl.Is S S
1' k' k+i'' k+j' s 2IEfw(NI,S N... N9k'S))

dF - dFN(XlYl,...
NIS NS '- 20 P(EI) where f ;i=l,2,...I is a -representation

where F N (. ) Is the distribution function of for fNi;il,2,...I . Tn a similar manner, we find

NiS ...NkSk, that the second summand on the right hand side of (3)
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can be upper bounded by 2 E ,S1,.... NkSk) k1 ..... +2m+)
= 2,i P(E), where { I;i=l,2,. ..) is a *-represen-

tation for {S ;i=l,2,.... 1 . These bounds thus G[q (1+1)/2 (x2, 4 .. x 1+2m+),X I I 1 is odd
imply JE~l hIhj-E{I E}Ehj}I : 2(B i + i) P(El ) I I

y E I J l E h Ix I if i is even

and hence it follows from (1) and (2), by allowing and let V = . . IV
j =, that le• . i+2m+l

We thus obtain, for i=1,2,...jP(EIflE2 ) -P'(E1)P'(F 2 ) s 2($ + Wi
) 

P(E I  .

1 2 1 21fii 
dIN if 1 s odAn analogous argument in conjunction with a = (1+I)/2

straightforward modification of [9, p. 1701 V8 f

1/r ISi/2 if i is even.1/s replaces Cn ) yields
(where 0 re e )hence NISIN 2''2,. arises via the time varying

JP(E InE 2 ) -P(EI)PE 2)1 2( i + P i)E 2) • finite memory transformation . on the acceptable

Therfor, w coclue tat lI~,N Is process U i;i=1,2....} . The desiredcresult thus
2': + 2) follows from a straightforward modification of the

symmetrically B-mixing with B-representation proof of Proposition 7 of [5].
{ 2( i + )i,2.. ,and is therefore acceptable.QE

QEED

We now are in a position to obtain a significant
In the case where there exists dependency be- result pertinent to the detection context:

tween the signal and noise the situation is more
involved. For many cases of engineering interest, Theorem 1: Suppose .i:I R

2
p+2 J ;i=1,2,...} is a

where the noise is dependent on a finite "window" I

of the signal, such as the signal-dependent noise family of measurable functions where p is a fixed
induced through reverberation effects, we can ob- nonnegative integer. Then under the hypothesis of
tain the desired result. The extension of Lemma 1 Lemma 1 or Lemma 2, we have that 1.i(N1 ,S.
to this signal-dependent noise case is given by the N ,S );i=1,2,.. .} is acceptable.
following: i+pSi+p

Lemma 2: Suppose [S ;i=12.. ) is acceptable, and Proof: This follows as a consequence of Lemma 2 and
1 ' a straightforward modification of Proposition 7 of

for a fixed nonnegative integer m, Ni=C(Xi,Z I) for [5].

i=1,2,... where Xi is o{Si- m ... S Isi+ M } measurable, QED

2c: IR , Bis measurable, and (Zi;i=l,2,...} is A result of interest now follows as a direct

accetable and independent of {S i;i=l,2,...} (we let corollary:
i-in 1o 1im). Then NI S2S, is ac-

Ifor m).TnNSN 2' 2- Corollary: Under the hypothesis of Lemma 1 and
ceptable. Lemma 2, {Yi =l,2, ... I is symmetrically 0-mixing

Proof: We infer from Lemma 1 that Z1 ,S1 ,Z2,S2,... under HI, with C-representation independent ofe and

Is acceptable. There exist [8, p.603] measurable given by -1=, 4i=2( i-i + 1 i-l
) 

for i1,2,3,...

functions q, with X1 =qi(Si_m,...,si+V), where S1  under the hypothesis of Lemma 1, and

appears only once if I<m. For each integer i> 2m, 01=f2= .' =4m+2=l i=20 (i-4m-2 + i-4m-2 ) for
4m+2 ,x i=4m+3,4m+4,... under the hypothesis of Lemma 2,

define , 4 by ,'(xI ...... 4m+2) where {Bi)i,{i, i are associated with {N

(under the hypothesis of Lemma 1), (Si'i , and

C[q(i+l)/2 (x2 x4 . x4m+2),x2m+ 1 if is odd (Zi)i, respectively.

X if i is even Proof: This follows from Theorem 1, the proofs of

2m+l Lemma I and Lemma 2, and a straightforward modifi-

Definc a process {U ;i=,2,....the proof of Proposition 7 of [5].

Z(i+l)/2 if i is odd QED

U,= We now can obtain the result which will allow
i/2 if I is even employment of the Pitman-Noether Theorem [6].

Note that fU ;il,2,...) is just ZI,SI,Z2,S2 .... Theorem 2: Suppose (t R with 0 - 0, and g e W.1 12 n n

and is, therefore acceptable. We then define, Let T T under H with parameter where
for i ) 2m, V - .Un i-2m i+2m+l If lsis2m, Tn . On

define 9AZ 
1
+2m+l by the noise and signal processes satisfy the hypoth-
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es.is of Lemma 1 or Lemma 2. Then a (g) converges density of N1 and Nj+ 1 , and f is the univarlateabouey 2 A 0{(Tn,1

absolutely ,0 [T ITn o 0 (g), density of NI, or

and n) -fE (x,y) + f (y,x)] g(y)dy + f(x,y)dy=
and(,H(C)E) . J ' jy Ix°n, j=1

-f(x)g(x) , if ffyg(x) 2- f(x,y) dxdy 0 0, or
Proof: Note that (N ;i=l,2 .... ) is acceptable

under the hypothesis of Lemma 1 and Lemma 2, the f f (xy) +f(yx)] d
latter following as a result of Theorem 1. It (D)J+ gyy +

therefore follows from [9, p.184] that o2 (g) con- -2 f
verges absolutely. Letting T 0 denote Tg under H0, jy a2
aad applying Proposition 7 of [51 to {g(Ni);i=1,2,

...}, we conclude from the proof of Theorem 20.1 ffyg(x) 2- f(x,y)dxdy = 0, where f(-,-)

in [9, pp.1
8
4-190] that Tg /n is uniformly inte- is the joint density of N and

grable, and hence it follows from [9, pp.33,184]
and assumption (f) that Proof: Referring to the Pitman-Noether Theorem (6],

2 with (m,6) = (1, ) or (m,6) = (2,k), we note that
E[T g assumptions (b)-(b') together with negative scaling

2 1. (4) of the threshold if necessary imply conditions A and
no0 (g) B of the Pitman-Noether Theorem, whereas (c)-(c')

imply the first part of condition C. We infer the
Furthermore, from [9, p.170] and Theorem I we con- second part of condition C from (4) and (5), and
clude condition D' from Theorem 2. Consider now the proof

E{(Tn - ETn 0 2 of (C). We employ the Pitman-Noether Theorem with
- -_I On = k /yn, and obtain an expression for the effi-cacy n(g) given by n(g) 

= 
[a- ER g(Y1)  1 (g).

(1 + 4 0 i 
)  

{g(Nl + 0nSl)-g(Nl
)
)
2
) + cc g

E{g(N1 + 0Sl where... Assumption (e) then implies 2- E0{g(Y 1 )11 =

I=I ffg ~ o~ (x,y)dxdv

Using a technique similar to that employed in [10] 30 ffg(x+y)f d =0 =
(or a result given in [11]), we conclude from
assumptions (c) - (c') and (d) that - fyg(x) - f(x,y)dxdy 1 0. Using the

E{T -E{rn,} - To/)2 o, (5)
E{(T - ,E{ g methods of Theorem 1 of [5] we obtain the desired

which when combined with (4) yields 2 2 result. To obtain (D), we note that
wn,0 w h o m ng(Ye 0, so we yiels= k2/n

&, 
and ob-

The final result follows from (5) and [9, pp.25,184]. T0 1 1=0 let On

Q] E D 2] 2 2 g .
We can now obtain the main result ta (g) = g0Eg(Yl) o(g). In this

Theorem 3: Suppose that the hypothesis of Lemma 1 case, assumptions (b') and (e') imply
or Lemma 2 is satisfied, and g e W. Then g is opti-cae asupin (b)nde) ml
mal (in the sense of the ARE) if and only if g sat- 3 2 

2 (f
isfiea (up to a scale factor) "- E0 {g(Y)} =(x+Ov)f(xv)dxdy02 00 1 " " 0=

(A) [fj(x,y) + fj(y,x)] g(y)dy + f'(x)=

-f(x)g(x) = -Jf yg(x) a f(x-0y,y) 0 dxdy =

if {N } I and {Si} lI are independent and E{S , 0 o2

yg(x) 2- 2f(x,y)dxdy 0 0 , and we obtain
or ax
(B) (xy) + ,x)] g(y)dy + f"(x) - (D) in the same way as (C). We derive (A) and (B)

( fin a similar manner by employing assumption (a) and
j1 l noting that f(.,.) factors.

-f(x)g(x) QED

if {N1 ;il,2,...) and [Si=i-l,2,...) are indepen- Note that the methods of [4,5] may be employed

dent and E(SI } 0, where fj(*,.) is the Joint to obtain the solution of the required integral
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equation, which is of nonstandard form. The bounds 10. C. L. Wise, "On preservation of mean square

of Proposition 5 and 6 of [5 may he obtained continuity under zero memory nonlinear trans-

through the use of the corollary to Theorem 1. formations." J. Franklin Institute, vol. 303,
pp. 201-207, February 1977.

IV. Conclusion
11. G. L. Wise and H. V. Poor, "Stochastic con-

We have considered the design of the optimal vergence under nonlinear transformations on

detector for signal detection in corrupting noise, metric spaces," Proceedings of the 1980 Con-

where both the signal and noise may be chosen from ference on Information Sciences and Systems,

a large class of -mixing processes and may be de- Princeton University, March 26-28, 1980.

pendent on each other. We have seen that this de-

sign reduces to the solution of an integral equa-

tion in which knowledge of only the second-order

statistics of the random processes involved is

required. In particular, if the signal is indep-
endent of the noise and has nonzero mean, the

optimal detector is the same as in the constant
known signal case.
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